We consider "y_1=\\sin 3x" and "y_2=\\cos 3x" . Then the requested wronskian is:
"\\left. \n\\begin{array}{l}\ny_1=\\sin 3x\\Rightarrow y_1'=3\\cos 3x\\\\\ny_2=\\cos 3x\\Rightarrow y_2'=-3\\sin 3x\n\\end{array}\n\\right\\}"
Substituting the latter into the Wronskian, we obtain:
"=3(\\cos^2 3x-\\sin^2 3x)=3\\cos (2\\cdot 3x)=\\boxed{3\\cos 6x}"
Comments
Leave a comment