Solution;
The symbolic form of the equation is;
"(D^2-7D+10)y=24e^x"
The auxiliary equation is;
"m^2-7m+10=0"
Rewrite as the following;
"m^2-2m-5m+10=0"
"m(m-2)-5(m-2)=0"
"(m-2)(m-5)=0"
m=2 or 5
Hence;
"C.F=y_c" ="C_1e^{2x}+C_2e^{5x}"
To find the particular solution;
Take,
"y_1=e^{2x}" ,"y_2=e^{5x}" and "X=24e^x"
Find the Workisian;
"W=\\begin{bmatrix}\n y_1 & y_2 \\\\\n y_1' & y_2'\n\\end{bmatrix}" ="\\begin{bmatrix}\n e^{2x} & e^{5x} \\\\\n 2e^{2x} & 5e^{5x}\n\\end{bmatrix}"
"W=5e^{7x}-2e^{7x}=3e^{7x}"
"P.I=y_p=uy_1+vy_2"
Take ;
"u=-\\int\\frac{y_2X}{W}=-\\int\\frac{e^{5x}24e^x}{3e^{7x}}=8e^{-x}"
"v=\\int\\frac{y_1X}{W}=\\int\\frac{e^{2x}24e^x}{3e^{7x}}=-2e^{-4x}"
"P.I=y_p=8e^{-x}e^{2x}+-2e^{-4x}e^{5x}"
"y_p=8e^x-2e^x=6e^x"
The general solution is;
"y=C.F+P.I=y_c+y_p"
"y=C_1e^{2x}+C_2e^{5x}+6e^x"
Hence the solution is verified.
Comments
Leave a comment