Answer to Question #233790 in Differential Equations for Phyroehan

Question #233790

Find the general/particular solution of the following Differential Equations.

(Exact D.E)


[x Cos ( x + y ) + Sin ( x + y )] dy + x Cos (x+y) dy=0


1
Expert's answer
2021-09-09T09:59:45-0400
"(x \\cos ( x + y ) + \\sin ( x + y )) dx+ x\\cos (x+y) dy=0"


"\\dfrac{\\partial P}{\\partial y}=-x\\sin(x+y)+\\cos(x+y)"

"\\dfrac{\\partial Q}{\\partial x}=\\cos(x+y)-x\\sin(x+y)"


"\\dfrac{\\partial P}{\\partial y}=-x\\sin(x+y)+\\cos(x+y)=\\dfrac{\\partial Q}{\\partial x}"

The differential equation 


"(x \\cos ( x + y ) + \\sin ( x + y )) dx+ x\\cos (x+y) dy=0"

is an exact equation.

Then we write the system of two differential equations that define the function "u(x,y)"


"\\begin{cases}\n \\dfrac{\\partial u}{\\partial x}=x \\cos ( x + y ) + \\sin ( x + y ) \\\\\n\\\\\n\\dfrac{\\partial u}{\\partial y}=x\\cos(x+y)\n\\end{cases}"

Integrate the first equation over the variable "x"


"u(x, y)=\\int(x \\cos ( x + y ) + \\sin ( x + y ))dx+\\varphi(y)"

"\\int x\\cos(x+y)dx=x\\sin(x+y)-\\int\\sin(x+y)dx"

"=x\\sin(x+y)+\\cos(x+y)+C_1"




"\\int \\sin(x+y)dx=-\\cos(x+y)+C_2"

Then


"u(x, y)=\\int(x \\cos ( x + y ) + \\sin ( x + y ))dx+\\varphi(y)"


"=x\\sin(x+y)+\\cos(x+y)-\\cos(x+y)+\\varphi(y)"

"=x\\sin(x+y)+\\varphi(y)"

"u(x,y)=x\\sin(x+y)+\\varphi(y)"

Differentiate with respect to "y"


"\\dfrac{\\partial u}{\\partial y}=x\\cos(x+y)+\\varphi'(y)=x\\cos(x+y)"

"\\varphi'(y)=0"

"\\varphi(y)=-C"

The general solution of the exact differential equation is given by


"x\\sin(x+y)=C"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog