dr = b(cos ϕdr + rsin ϕdϕ) note: b is a constant
Separable DE
"dr\\ \\ =\\ \\ b\\left(\\mathrm{cos}\\left(\\phi \\right)dr\\ \\ \\ +\\ \\ r\\mathrm{sin}\\left(\\phi \\right)d\\phi \\right) \\\\\n\n \\\\\n\n\\mathrm{1}\\ \\ =\\ \\ b\\left(\\mathrm{cos}\\left(\\phi \\right)\\ \\ \\ +\\ \\ r\\mathrm{sin}\\left(\\phi \\right)\\frac{d\\phi }{dr}\\right) \\\\\n\n \\\\\n\n\\frac{\\left(\\mathrm{1}-b\\mathrm{cos}\\left(\\phi \\right)\\right)}{b\\ \\mathrm{sin}\\left(\\phi \\right)}\\ \\ =\\ \\ \\left(\\ r\\frac{d\\phi }{dr}\\right) \\\\\n\n \\\\\n\nb\\frac{\\mathrm{sin}\\left(\\phi \\right)\\ \\ d\\phi }{\\left(\\mathrm{1}-b\\mathrm{cos}\\left(\\phi \\right)\\right)}\\ \\ =\\ \\ \\left(\\ \\frac{dr}{r}\\right) \\\\\n\n \\\\\n\n\\int{\\frac{d\\left(\\mathrm{1}-b\\mathrm{cos}\\left(\\phi \\right)\\ \\right)\\ }{\\left(\\mathrm{1}-b\\mathrm{cos}\\left(\\phi \\right)\\right)}}\\ \\ =\\ \\ \\int{d\\left(\\mathrm{ln}\\left(r\\right)\\right)} \\\\\n\n \\\\\n\n\\mathrm{ln}\\left(\\mathrm{1}-b\\mathrm{cos}\\left(\\phi \\right)\\ \\right)\\ \\ \\ =\\ \\ \\mathrm{ln}\\left(r\\right)+\\mathrm{ln}\\left(C\\right) \\\\\n\n \\\\\n\n\\mathrm{ln}\\left(\\mathrm{1}-b\\mathrm{cos}\\left(\\phi \\right)\\ \\right)\\ \\ \\ =\\ \\ \\mathrm{ln}\\left(Cr\\right) \\\\\n\n \\\\\n\n\\mathrm{1}-b\\mathrm{cos}\\left(\\phi \\right)\\ =Cr\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\left(where\\ \\ C\\ \\ is\\ \\ an\\ \\ abitrarily\\ \\ \\ cons\\mathrm{tan}t\\right)"
Comments
Leave a comment