Solution;
Assume;
"y=\\displaystyle\\sum_{n=0}^{\\infin}a_nx^{r+n}"
"y'=\\displaystyle\\sum_{n=0}^{\\infin}a_n(r+n)x^{r+n-1}"
"y''=\\displaystyle\\sum_{n=0}^{\\infin}a_n(r+n)(r+n-1)x^{r+n-2}"
Substitute y,y' and y'' into the given equation to obtain;
"\\displaystyle\\sum_{n=0}^{\\infin}a_n(r+n)(r+n-1)x^{r+n}-\\displaystyle\\sum_{n=0}^{\\infin}2a_n(r+n)x^{r+n+1}-\\displaystyle\\sum_{n=0}^{\\infin}2a_n(r+n)x^{r+n}+\\displaystyle\\sum_{n=0}^{\\infin}a_nx^{r+n+2}+\\displaystyle\\sum_{n=0}^{\\infin}2a_nx^{r+n+1} +\\displaystyle\\sum_{n=0}^{\\infin}2a_nx^{r+n}"
We shift the terms as follows;
"\\displaystyle\\sum_{n=0}^{\\infin}a_n(r+n)(r+n-1)x^{r+n} -\\displaystyle\\sum_{n=1}^{\\infin}2a_{n-1}(r+n)x^{r+n} -\\displaystyle\\sum_{n=0}^{\\infin}2a_n(r+n)x^{r+n}+\\displaystyle\\sum_{n=2}^{\\infin}a_{n-2}x^{r+n}+\\displaystyle\\sum_{n=1}^{\\infin}2a_{n-1}x^{r+n}+\\displaystyle\\sum_{n=0}^{\\infin}2a_nx^{r+n}"
At n=0;
"a_0[r(r-1)-2r+2]=0"
But "a_0\\neq0"
Hence;
"r^2-3r+2=0"
"(r-2)(r-1)=0"
Therefore;
r=2 or 1
At n=1;
"a_1(r+1)r-2a_0(r+1)-2a_1(r+1)+2a_0+2a_1=0"
"a_1r^2+a_1r-2a_0r-2a_0-2a_1r-2a_1+2a_0+2a_1=0"
Simplify as;
"a_1(r^2+r-2r)-2a_0r=0"
"a_1=\\frac{2a_0r}{r(r-1)}"
To solve ,we take r=2;
"a_1=2a_0"
At n=2 ,all terms produces,hence we have a general formula;
"a_n(r+n)(r+n-1)-2a_{n-1}(r+n)-2a_n(r+n)+a_{n-2}+2a_{n-1}+2a_n=0"
Combine as follows;
"a_n[(2+n)(n+1)-2(2+n)+2]=2a_{n-1}[2+n+2]+a_{n-2}"
Hence;
"a_n=\\frac{2a_{n-1}(4+n)+a_{n-2}}{(2+n)(n+1)-2(n+2)+2}"
This is the recurrence relationship using r=2;
Hence we find other terms;
n=2;
"a_2=\\frac{2a_1(6)+a_0}{4.3-8+2}" ="\\frac{12a_1+a_0}{6}"
Since "a_1=2a_0" ,by substitution;
"a_2=\\frac{25a_0}{6}"
When n=3;
"a_3=\\frac{2a_2(8)+a_1}{5.4-10+2}=\\frac{14a_2+a_1}{12}"
By substitution ;
"a_3=\\frac{181a_0}{36}"
When n=4;
"a_4=\\frac{2a_3(8)+a_2}{6.5-16+2}=\\frac{16a_3+a_2}{20}"
By substitution;
"a_4=\\frac{1523}{360}a_0"
The solution of the equation becomes;
"y=x^2\\displaystyle\\sum_{n=0}^{\\infin}a_nx^{n}"
Hence ;
"y=x^2[a_0+2a_0x+\\frac{25a_0}{6}x^2+\\frac{181}{36}a_0x^3+\\frac{1523}{360}a_0x^4+..."
Comments
Leave a comment