Answer to Question #231865 in Differential Equations for tok

Question #231865

verify whether y(x)= 2e-x + xe-x is a solution of y" + 2y' + y=0.


1
Expert's answer
2021-09-02T00:07:59-0400

"y=2e^{-x} +xe^{-x}" find

"y'=-2e^{-x}+e^{-x}-xe^{-x}=-e^{-x}-xe^{-x}\\\\\ny''=e^{-x}-e^{-x}+xe^{-x}=xe^{-x}"

Substitute in equation

"xe^{-x}+2\\cdot (-e^{-x}+xe^{-x})+2e^{-x}+xe^{-x}=\\\\\n=xe^{-x}-2e^{-x}-2xe^{-x}+2e^{-x}+xe^{-x}=0"

so "y=2e^{-x} +xe^{-x}"is solution of "y''+2y'+y=0".


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog