verify whether y(x)= 2e-x + xe-x is a solution of y" + 2y' + y=0.
"y=2e^{-x} +xe^{-x}" find
"y'=-2e^{-x}+e^{-x}-xe^{-x}=-e^{-x}-xe^{-x}\\\\\ny''=e^{-x}-e^{-x}+xe^{-x}=xe^{-x}"
Substitute in equation
"xe^{-x}+2\\cdot (-e^{-x}+xe^{-x})+2e^{-x}+xe^{-x}=\\\\\n=xe^{-x}-2e^{-x}-2xe^{-x}+2e^{-x}+xe^{-x}=0"
so "y=2e^{-x} +xe^{-x}"is solution of "y''+2y'+y=0".
Comments
Leave a comment