Find all solutions of the given differential equations and then find the particular solutions for which a point (x,y) is given:
dy/dx = x
First we solve the integral by separating the terms:
"\\frac{dy}{dx}={x} \\to \\intop dy=y=\\int{xdx}=\\frac{x^{2}}{2}+C\n\\\\\\implies y=\\frac{x^{2}}{2}+C"
Then, we substitute the coordinates (xi,yi) to find C for the particular solution:
"y_i=\\frac{x_i^{2}}{2}+C \\implies C=y_i-\\frac{x_i^{2}}{2}"
In conclusion:
"\\text{General solution: } \\\\ y=\\frac{x^{2}}{2}+C \\\\ \\text{Particular solution } (x_i,y_i):\\\\ y=\\frac{x^{2}}{2}+y_i-\\cfrac{x_i^{2}}{2}\n\n\u200b"
Comments
Leave a comment