Answer to Question #230927 in Differential Equations for syra

Question #230927

Find all solutions of the given differential equations and then find the particular solutions for which a point (x,y) is given:


dy/dx = x


1
Expert's answer
2021-09-02T00:34:26-0400

We may rewrite the equation in form

"dy = x\\cdot dx,"

next, we integrate both parts and get

"\\int dy = \\int x\\cdot dx, \\\\\ny = \\dfrac12\\cdot x^2 + c."


If the point "(x_0, y_0)" is given, we may obtain the constant c:

"c = y_0 - \\dfrac12\\cdot x_0^2\\,,"

so the solution will be

"y = \\dfrac12x^2 + y_0 - \\dfrac12x_0^2\\,."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog