Find the general solution of the differential equation y" + 16y = 2 sec(4t) tan(4t)
Select one:
O none of the given answers is true
y = ci cos(4t) + c2 sin(4t) + ,t cos(4t) - sin(4t) In | cos(4t) |
y = ci cos(4t) + c2 sin(4t) - t cos(4t) + sin(4t) In | cos(4t) |
y = ci cos(4t) + c2 sin (4t) -
7t sin(4t) - - cos(4t) In | sin(4t) |
y = ci cos(4t) + C2 sin(4t) + ,t sin(4t) + - cos(4t) In | sin(4t)|
Corresponding homogeneous differential equation
Characteristic equation
"r=\\pm4i"
The general solution of the homogeneous differential equation is
Use the variation of parameters
Find the partial solution
"+\\sin(4x)\\int\\dfrac{\\cos(4x)\\sec(x)\\tan(x)}{4}dx"
"\\int\\dfrac{\\sin(4t)\\sec(4t)\\tan(4t)}{4}dt=\\int\\dfrac{\\tan^2(4t)}{4}dt"
"=\\int\\dfrac{\\sec^2(4t)-1}{4}dt=\\dfrac{\\tan(4t)}{16}-\\dfrac{t}{4}-C_3"
"=\\int\\dfrac{\\sin(4t)}{4\\cos(4t)}dt=-\\dfrac{\\ln|\\cos(4t)|}{16}+C_4"
"y_p=-\\cos(4t)\\dfrac{\\tan(4t)}{16}+\\dfrac{t}{4}\\cos(4t)-C_3\\cos(4t)"
"-\\sin(4t)\\dfrac{\\ln|\\cos(4t)|}{16}+C_4\\sin(4t)"
The general solution of the given differential equation is
"-\\dfrac{\\sin(4t)}{16}+\\dfrac{t}{4}\\cos(4t)-\\sin(4t)\\dfrac{\\ln|\\cos(4t)|}{16}"
Comments
Leave a comment