If yp = uj (t) cos(2t) + u2(t) sin(2t) is a particular solution of the differential equation
y" + 4y= csc(2t) cot(2t), then u, (t) =
Select one:
O none of the given answers is true
O Lt + - cot(2t)
O _ In | sin(2t) |
O
_ In | sin(2t) |
O
cot (2t)
"y'' + 4y= csc(2t) cot(2t)"
First, let's find the complementary solution of the ODE.
The characteristic equation is "r^2+4=0\\Rightarrow r=\\pm2i\n\\\\y_c(t)=Acos 2t+Bsin2t"
To find a particular integral of the ODE, we calculate the Wronskian:
with: "y_1(t) = cos2t\\ \\text{and} \\ y_2(t) = sin2t\n\\\\ W(y_1, y_2) = y_1(t)y'_2 (t) \u2212 y_2(t)y'_1 (t)"
"=cos2t.(2cos2t)-sin2t(-2sin2t)\\\\=2(cos^2t+sin^2t)\\\\=2"
Then a particular integral of the ODE is:
"y_{p}(t)=-y_{1}(t) \\int \\frac{y_{2}(t) f(t)}{W\\left(y_{1}, y_{2}\\right)} d t+y_{2}(t) \\int \\frac{y_{1}(t) f(t)}{W\\left(y_{1}, y_{2}\\right)} d t\n\\\\"
Here, "f(t)=csc(2t)cot(2t)"
"y_{p}(t)=-cos2t \\int \\frac{sin2t. csc(2t)cot(2t)}{2} d t+sin2t \\int \\frac{cos2t.csc(2t)cot(2t)}{2} d t\n\\\\=-cos2t \\int \\frac{cot(2t)}{2} d t+sin2t \\int \\frac{cot^2(2t)}{2} d t\n\\\\=-\\frac{cos2t.ln|sin 2t|}{4}+ sin2t \\int \\frac{csc^2(2t)-1}{2} d t\n\\\\=-\\frac{cos2t.ln|sin 2t|}{4}+ \\frac{sin2t(-cot(2t)-2t)}{4}"
Comparing the above result with the given, we will get
"u_1(t)=-\\frac{ln|sin 2t|}{4}, u_2(t)= \\frac{(-cot(2t)-2t)}{4}"
Comments
Leave a comment