y′′+4y=csc(2t)cot(2t)
First, let's find the complementary solution of the ODE.
The characteristic equation is r2+4=0⇒r=±2iyc(t)=Acos2t+Bsin2t
To find a particular integral of the ODE, we calculate the Wronskian:
with: y1(t)=cos2t and y2(t)=sin2tW(y1,y2)=y1(t)y2′(t)−y2(t)y1′(t)
=cos2t.(2cos2t)−sin2t(−2sin2t)=2(cos2t+sin2t)=2
Then a particular integral of the ODE is:
yp(t)=−y1(t)∫W(y1,y2)y2(t)f(t)dt+y2(t)∫W(y1,y2)y1(t)f(t)dt
Here, f(t)=csc(2t)cot(2t)
yp(t)=−cos2t∫2sin2t.csc(2t)cot(2t)dt+sin2t∫2cos2t.csc(2t)cot(2t)dt=−cos2t∫2cot(2t)dt+sin2t∫2cot2(2t)dt=−4cos2t.ln∣sin2t∣+sin2t∫2csc2(2t)−1dt=−4cos2t.ln∣sin2t∣+4sin2t(−cot(2t)−2t)
Comparing the above result with the given, we will get
u1(t)=−4ln∣sin2t∣,u2(t)=4(−cot(2t)−2t)
Comments