Question #226266

If yp = uj (t) cos(2t) + u2(t) sin(2t) is a particular solution of the differential equation

y" + 4y= csc(2t) cot(2t), then u, (t) =

Select one:

O none of the given answers is true

O Lt + - cot(2t)


O _ In | sin(2t) |

O

_ In | sin(2t) |

O

cot (2t)



1
Expert's answer
2021-09-01T14:28:35-0400

y+4y=csc(2t)cot(2t)y'' + 4y= csc(2t) cot(2t)

First, let's find the complementary solution of the ODE.

The characteristic equation is r2+4=0r=±2iyc(t)=Acos2t+Bsin2tr^2+4=0\Rightarrow r=\pm2i \\y_c(t)=Acos 2t+Bsin2t

To find a particular integral of the ODE, we calculate the Wronskian:

with: y1(t)=cos2t and y2(t)=sin2tW(y1,y2)=y1(t)y2(t)y2(t)y1(t)y_1(t) = cos2t\ \text{and} \ y_2(t) = sin2t \\ W(y_1, y_2) = y_1(t)y'_2 (t) − y_2(t)y'_1 (t)

=cos2t.(2cos2t)sin2t(2sin2t)=2(cos2t+sin2t)=2=cos2t.(2cos2t)-sin2t(-2sin2t)\\=2(cos^2t+sin^2t)\\=2

Then a particular integral of the ODE is:

yp(t)=y1(t)y2(t)f(t)W(y1,y2)dt+y2(t)y1(t)f(t)W(y1,y2)dty_{p}(t)=-y_{1}(t) \int \frac{y_{2}(t) f(t)}{W\left(y_{1}, y_{2}\right)} d t+y_{2}(t) \int \frac{y_{1}(t) f(t)}{W\left(y_{1}, y_{2}\right)} d t \\

Here, f(t)=csc(2t)cot(2t)f(t)=csc(2t)cot(2t)

yp(t)=cos2tsin2t.csc(2t)cot(2t)2dt+sin2tcos2t.csc(2t)cot(2t)2dt=cos2tcot(2t)2dt+sin2tcot2(2t)2dt=cos2t.lnsin2t4+sin2tcsc2(2t)12dt=cos2t.lnsin2t4+sin2t(cot(2t)2t)4y_{p}(t)=-cos2t \int \frac{sin2t. csc(2t)cot(2t)}{2} d t+sin2t \int \frac{cos2t.csc(2t)cot(2t)}{2} d t \\=-cos2t \int \frac{cot(2t)}{2} d t+sin2t \int \frac{cot^2(2t)}{2} d t \\=-\frac{cos2t.ln|sin 2t|}{4}+ sin2t \int \frac{csc^2(2t)-1}{2} d t \\=-\frac{cos2t.ln|sin 2t|}{4}+ \frac{sin2t(-cot(2t)-2t)}{4}

Comparing the above result with the given, we will get

u1(t)=lnsin2t4,u2(t)=(cot(2t)2t)4u_1(t)=-\frac{ln|sin 2t|}{4}, u_2(t)= \frac{(-cot(2t)-2t)}{4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS