Find the particular solution of each of the differential equation expressing y explicitly in terms of x.
e) dy/dx - 2xy = 0 y=3 when x = 0
f) xdy/dx + y 2= 0 (x>0) y=1/2 when x= 1
"1\\\\\n\\frac{dy}{dx}-2xy=0\\\\\n\\frac{dy}{dx}=2xy\\\\\n\\frac{dy}{y}=2xdx\\\\\n\\text{Integrate both sides}\\\\\n\\ln y=x^2+C\\\\\ny=Ae^{x^2}\\\\\n\\text{When } x=0, y=3\\\\\n3=Ae^0\\\\\nA=3\\\\\n\\text{The particular solution is }\\\\\ny=3e^{x^2}.\\\\\\\\\n\n2.\\\\\nx\\frac{dy}{dx}+y^2=0\\\\\nxdy=-y^2dx\\\\\n-\\frac{dy}{y^2}=\\frac{dx}{x}\\\\\n\\text{Integrate both sides}\\\\\n\\frac{1}{y}=\\ln x+ C\\\\\ny=\\frac{1}{\\ln x+ C}\\\\\n\\text{When } x=1, y= \\frac{1}{2}\\\\\n\\frac{1}{2}=\\frac{1}{\\ln x+ C}\\\\\n\\frac{1}{2}=\\frac{1}{C}\\\\\nC=2\\\\\n\\text{The particular solution is }\\\\\ny=\\frac{1}{\\ln x+2}"
Comments
Leave a comment