x2y''+xy'+4y=2xlnx
Homogeneous equation
Let "y=x^r"
"y'=rx^{r-1}"
"y''=r(r-1)x^{r-2}"
"r=\\pm2 i"
The general solution of the homogeneous equation is
Divide both sides by "x^2"
Wronskian
"W_1=\\begin{vmatrix}\n 0& \\sin(2\\ln x) \\\\\n \\dfrac{2}{x}\\ln x & \\dfrac{2}{x}\\cos(2\\ln x)\n\\end{vmatrix}=-\\dfrac{2}{x}\\ln x \\sin(2\\ln x)"
"u_1=\\int\\dfrac{W_1}{W}dx=\\int\\dfrac{-\\dfrac{2}{x}\\ln x \\sin(2\\ln x)}{\\dfrac{2}{x}}dx"
"=-\\int \\ln x \\sin(2\\ln x)dx"
"=-\\dfrac{1}{25}x(5\\ln x+3)\\sin(2\\ln x)+\\dfrac{1}{25}(10\\ln x-4)\\cos(2\\ln x)"
"=\\int \\ln x \\cos(2\\ln x)dx"
"=\\dfrac{1}{25}x(10\\ln x-4)\\sin(2\\ln x)+\\dfrac{1}{25}(5\\ln x+3)\\cos(2\\ln x)"
Particular solution of the non-homogeneous equation is
"y_p=-\\dfrac{1}{25}x(5\\ln x+3)\\sin(2\\ln x)\\cos(2\\ln x)"
"+\\dfrac{1}{25}(10\\ln x-4)\\cos^2(2\\ln x)"
"+\\dfrac{1}{25}x(10\\ln x-4)\\sin^2(2\\ln x)"
"+\\dfrac{1}{25}(5\\ln x+3)\\sin(2\\ln x)\\cos(2\\ln x)"
The general solution of the homogeneous equation is
"-\\dfrac{1}{25}x(5\\ln x+3)\\sin(2\\ln x)\\cos(2\\ln x)"
"+\\dfrac{1}{25}(10\\ln x-4)\\cos^2(2\\ln x)"
"+\\dfrac{1}{25}x(10\\ln x-4)\\sin^2(2\\ln x)"
"+\\dfrac{1}{25}(5\\ln x+3)\\sin(2\\ln x)\\cos(2\\ln x)"
Comments
Leave a comment