y''+3y'+2y= 1/(1+ex)
Related homogeneous differential equation
The roots of the characteristic equation are
"(r+1)(r+2)=0"
"r_1=-2,r_2=-1"
The general solution of the homogeneous differential equation is
Use the method of variation of parameters
"c_1'(e^{-2x})'+c_2'(e^{-x})'=\\dfrac{1}{1+e^x}"
Then
"-2c_1'e^{-2x}+c_1'e^{-2x}=\\dfrac{1}{1+e^x}"
"c_1'=-\\dfrac{e^{2x}}{1+e^x}"
"c_1=-\\int\\dfrac{e^{2x}}{1+e^x}dx=\\ln(e^x+1)-e^x+C_1"
"c_2'=\\dfrac{e^{x}}{1+e^x}"
"c_2=\\int\\dfrac{e^{x}}{1+e^x}dx=\\ln(e^x+1)+C_2"
The general solution of the homogeneous differential equation is
Comments
Leave a comment