Determine the general solution to the exact differential equation
(e2y-ycosxy)dx+(2xe2y-xcosxy+2y)dy=0
"\\dfrac{\\partial N}{\\partial x}=2e^{2y}-\\cos(xy)+xy\\sin(xy)"
"\\dfrac{\\partial M}{\\partial y}=\\dfrac{\\partial N}{\\partial x}"
"\\dfrac{\\partial u}{\\partial y}=2xe^{2y}-x\\cos(xy)+2y"
"u(x,y)=\\int(e^{2y}-y\\cos(xy))dx+\\varphi(y)"
"=xe^{2y}-\\sin(xy)+\\varphi(y)"
"\\dfrac{\\partial u}{\\partial y}=2xe^{2y}-x\\cos(xy)+\\varphi'(y)"
"=2xe^{2y}-x\\cos(xy)+2y"
"\\varphi'(y)=2y"
"\\varphi(y)=y^2+C_1"
"u=xe^{2y}-\\sin(xy)+y^2+C_1"
Comments
Leave a comment