Question #219622

Consider the boundary value problem(BVP) defined by laplaces equation.

uxx+uyy=0 on the square o<x,y<2

subjected to the boundary conditions:

u(0,y)=0 ,u(x,2)=0 ,u(2,y)=0 ,u(x,0)=100sin(πx/2)

Solve the BVP using method of separation of variable.


1
Expert's answer
2021-07-26T15:56:38-0400

The given equation is -


2ux2\dfrac{\partial^{2}u}{\partial x^{2}} +2uy2=0.........................................1)+\dfrac{\partial^{2}u}{\partial y^{2}}=0.........................................1)


Let u=XY.............................................2)u=XY.............................................2)


where XX is a function of xx and YY is a function of yy , only then ,


2ux2=2(XY)x2=Yd2Xdx2\dfrac{\partial^{2}u}{\partial x^{2}}=\dfrac{\partial^{2}(XY)}{\partial x^{2}}=Y\dfrac{d^{2}X}{dx^{2}} and


2uy2=2(XY)y2=Xd2Ydy2\dfrac{\partial^{2}u}{\partial y^{2}}=\dfrac{\partial^{2}(XY)}{\partial y^{2}}=X\dfrac{d^{2}Y}{dy^{2}}



\therefore From (1), YX+XY=0YX^{''}+XY^{''}=0


    \implies XX+YY=0\dfrac{X^{''}}{X}+\dfrac{Y^{''}}{Y}=0


Now , we will make some cases -



Case I. When XX=YY\dfrac{X^{''}}{X}=-\dfrac{Y^{''}}{Y} =p2(say)=p^{2}(say)


i) XX=p2i) \ \dfrac{X^{''}}{X}=p^{2}


XP2X=0X^{''}-P^{2}X=0


Auxiliary equation is-


m2p2=0m^{2}-p^{2}=0


m=±pm={\pm}p


\therefore CF=c1epx+c2epxCF=c_1e^{px}+c_2e^{-px}


PI=0PI=0


\therefore X=X= c1epx+c2epxc_1e^{px}+c_2e^{-px}


ii)ii)  YY=p2    \ \dfrac{Y^{''}}{Y}=p^{2}\implies Y+P2Y=0Y^{''}+P^{2}Y=0


Auxiliary equation is -


m2+p2=0    m^{2}+p^{2}=0\implies m=±pim={\pm}pi


\therefore CF=c3cospy+c4sinpyCF=c_3cospy+c_4sinpy


PI=0PI=0


\therefore y=c3cospy+c4sinpyy=c_3cospy+c_4sinpy


Now , we have given some boundary conditions making use of them now -


X(0)=0X(0)=0


    \implies c1+c2=0c_{1}+c_{2}=0     c2=c1\implies c_2=-c_1


X(x)=0X(x)=0


    \implies c1epx+c2epx=0c_{1}e^{px}+c_2e^{-px}=0     \implies c1(epx+epx)=0c_1(e^{px}+e^{-px})=0


    \implies c1=0c_1=0 (Since epxepxe^{px}-e^{-px} 0(as p0l)\neq0(as\ p\neq0\neq l)


\therefore c2=0c_2=0


\therefore X=0    X=0\implies u=XY=0u=XY=0 which is impossible .


Hence Case 1 is rejected .


Case 2)Case \ 2) when XX=YY=0\dfrac{X^{''}}{X}=-\dfrac{Y^{''}}{Y}=0


i)i) XX=0\dfrac{X^{''}}{X}=0


    \implies X=0    X^{''}=0\implies X=c5x+c6X=c_5x+c_6


ii)ii) YY=0-\dfrac{Y^{''}}{Y}=0


    \implies Y=0    Y^{''}=0\implies Y=c7y+c8Y=c_7y+c_8


Now , X(0)=0    X(0)=0\implies c6c_6 == 0


X(x)=0X(x)=0


    \implies c5+c6=0    c_5+c_6=0\impliesc5l=0c_5l=0


    \implies c5=0c_5=0


X=0\therefore X=0

u=XY=0\therefore u=XY=0 which is impossible .


Hence we reject case 2 also .


Case 3)Case \ 3) when


XX=YY=p2(say)\dfrac{X^{''}}{X}=-\dfrac{Y^{''}}{Y}=-p^{2}(say)



(i)(i) XX=p2\dfrac{X^{''}}{X}=-p^{2}     d2Xdx2+p2=0\implies \dfrac {d^{2}X}{dx^{2}}+p^{2}=0


    \implies X+p2X=0X^{''}+p^{2}X=0


Auxiliary equation is given by -


=m2+p2=0    =m^{2}+p^{2}=0\implies m=±pim={\pm}pi


CF=c9cospx+c10sinpxCF=c_9cospx+c_{10}sinpx


PI=0PI=0


X=c9cospx+c10sinpxX=c_9cospx+c_{10}sinpx


(ii)(ii) YY=p2-\dfrac{Y^{''}}{Y}=-p^{2}     d2ydy2p2y=0\implies \dfrac{d^{2}y}{dy^{2}}-p^{2}y=0


Auxiliary equation is -


m2p2=0m^{2}-p^{2}=0


m=±pm={\pm}p


CF=c11epy+c12epy\therefore CF=c_{11}e^{py}+c_{12}e^{-py}


PI=0PI=0


hence , Y=c11epy+c12epyY=c_{11}e^{py}+c_{12}e^{-py}


Now , X(0)=0    c9=0X(0)=0 \implies c_{9}=0


X=c10sinpx\therefore X=c_{10}sinpx


X(l)=0X(l)=0


=c10sinpl=0=c_{10}sinpl=0


sinpl=0=sinnπ,nI\therefore sinpl=0=sinn{\pi}, n\in I


\therefore p=nπlp=\dfrac{n{\pi}}l


\therefore X=c10sinnπxlX=c_{10}sin\dfrac{n{\pi}x}{l} .............................................................3)


Again Y(0)=0Y(0)=0


c11+c12=0c11=c12\therefore c_{11}+c_{12}=0 \therefore c_{11}=-c_{12}



Y=c11(epyepy)=c11(enπlenπl)Y=c_{11}(e^{py}-e^{-py})=c_{11}(e^\dfrac{n{\pi}}{l}-e^\dfrac{-n{\pi}}{l})



u=XY=c10c11sinnπxl[(enπlenπl)]\therefore u=XY=c_{10}c_{11}sin\dfrac{n{\pi}x}{l}[(e^\dfrac{n{\pi}}{l}-e^\dfrac{-n{\pi}}{l})]



or u(x,y)=bnsinnπxl[(enπlenπl)]u(x,y)=b_nsin\dfrac{n{\pi}x}{l}[(e^\dfrac{n{\pi}}{l}-e^\dfrac{-n{\pi}}{l})]



Now u(x,0)=100sinπx2=bnsinnπxl[(enπlenπl)]u(x,0)=100sin\dfrac{{\pi}x}{2}=b_nsin\dfrac{n{\pi}x}{l}[(e^\dfrac{n{\pi}}{l}-e^\dfrac{-n{\pi}}{l})]


=bn=100sinπx2sinnπxl[(enπlenπl)]=b_{n}=\dfrac{100sin\dfrac{{\pi}x}{2}}{sin\dfrac{n{\pi}x}{l}[(e^\dfrac{n{\pi}}{l}-e^\dfrac{-n{\pi}}{l})]}



u(x,y)=u(x,y)= [(enπlenπl)]100sinπx2sinnπxl[(enπlenπl)][(e^\dfrac{n{\pi}}{l}-e^\dfrac{-n{\pi}}{l})]\dfrac{100sin\dfrac{{\pi}x}{2}}{sin\dfrac{n{\pi}x}{l}[(e^\dfrac{n{\pi}}{l}-e^\dfrac{-n{\pi}}{l})]} sinnπxlsin\dfrac{n{\pi}x}{l}

u(x,y)=100sinπx2u(x,y)=100sin\dfrac{{\pi}x}{2}


which is given solution .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS