The given equation is -
∂x2∂2u +∂y2∂2u=0.........................................1)
Let u=XY.............................................2)
where X is a function of x and Y is a function of y , only then ,
∂x2∂2u=∂x2∂2(XY)=Ydx2d2X and
∂y2∂2u=∂y2∂2(XY)=Xdy2d2Y
∴ From (1), YX′′+XY′′=0
⟹ XX′′+YY′′=0
Now , we will make some cases -
Case I. When XX′′=−YY′′ =p2(say)
i) XX′′=p2
X′′−P2X=0
Auxiliary equation is-
m2−p2=0
m=±p
∴ CF=c1epx+c2e−px
PI=0
∴ X= c1epx+c2e−px
ii) YY′′=p2⟹ Y′′+P2Y=0
Auxiliary equation is −
m2+p2=0⟹ m=±pi
∴ CF=c3cospy+c4sinpy
PI=0
∴ y=c3cospy+c4sinpy
Now , we have given some boundary conditions making use of them now -
X(0)=0
⟹ c1+c2=0 ⟹c2=−c1
X(x)=0
⟹ c1epx+c2e−px=0 ⟹ c1(epx+e−px)=0
⟹ c1=0 (Since epx−e−px =0(as p=0=l)
∴ c2=0
∴ X=0⟹ u=XY=0 which is impossible .
Hence Case 1 is rejected .
Case 2) when XX′′=−YY′′=0
i) XX′′=0
⟹ X′′=0⟹ X=c5x+c6
ii) −YY′′=0
⟹ Y′′=0⟹ Y=c7y+c8
Now , X(0)=0⟹ c6 = 0
X(x)=0
⟹ c5+c6=0⟹c5l=0
⟹ c5=0
∴X=0
∴u=XY=0 which is impossible .
Hence we reject case 2 also .
Case 3) when
XX′′=−YY′′=−p2(say)
(i) XX′′=−p2 ⟹dx2d2X+p2=0
⟹ X′′+p2X=0
Auxiliary equation is given by -
=m2+p2=0⟹ m=±pi
CF=c9cospx+c10sinpx
PI=0
X=c9cospx+c10sinpx
(ii) −YY′′=−p2 ⟹dy2d2y−p2y=0
Auxiliary equation is -
m2−p2=0
m=±p
∴CF=c11epy+c12e−py
PI=0
hence , Y=c11epy+c12e−py
Now , X(0)=0⟹c9=0
∴X=c10sinpx
X(l)=0
=c10sinpl=0
∴sinpl=0=sinnπ,n∈I
∴ p=lnπ
∴ X=c10sinlnπx .............................................................3)
Again Y(0)=0
∴c11+c12=0∴c11=−c12
Y=c11(epy−e−py)=c11(elnπ−el−nπ)
∴u=XY=c10c11sinlnπx[(elnπ−el−nπ)]
or u(x,y)=bnsinlnπx[(elnπ−el−nπ)]
Now u(x,0)=100sin2πx=bnsinlnπx[(elnπ−el−nπ)]
=bn=sinlnπx[(elnπ−el−nπ)]100sin2πx
u(x,y)= [(elnπ−el−nπ)]sinlnπx[(elnπ−el−nπ)]100sin2πx sinlnπx
u(x,y)=100sin2πx
which is given solution .
Comments