"(\\frac{1}{1+x^2} + \\cos t -2xt) \\frac{dx}{dt}- x(x+\\sin t)=0"
"(\\frac{1}{1+x^2} + \\cos t -2xt) \\frac{dx}{dt}- x(x+\\sin t)=\\frac{d}{dt}(\\arctan x+x\\cos t-x^2t)=0"
"\\arctan x+x\\cos t-x^2t=C"
if t=0 and x(0)=1 then
"C=\\arctan x+x\\cos t-x^2t=\\arctan 1+1\\cdot \\cos 0-1^2\\cdot0=\\pi\/4+1"
Answer: "\\arctan x+x\\cos t-x^2t=\\pi\/4+1"
Comments
Leave a comment