Answer to Question #215854 in Differential Equations for Zerin

Question #215854
Solve the problem :
(1/(1+x^2) + cos t -2xt) dx/dt = x(x+sin t), x(0)=1
1
Expert's answer
2021-07-12T18:43:07-0400

"(\\frac{1}{1+x^2} + \\cos t -2xt) \\frac{dx}{dt}- x(x+\\sin t)=0"

"(\\frac{1}{1+x^2} + \\cos t -2xt) \\frac{dx}{dt}- x(x+\\sin t)=\\frac{d}{dt}(\\arctan x+x\\cos t-x^2t)=0"

"\\arctan x+x\\cos t-x^2t=C"

if t=0 and x(0)=1 then

"C=\\arctan x+x\\cos t-x^2t=\\arctan 1+1\\cdot \\cos 0-1^2\\cdot0=\\pi\/4+1"


Answer: "\\arctan x+x\\cos t-x^2t=\\pi\/4+1"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog