Solution
To get general solution of homogeneous equation x0"+x0=0 let’s solve characteristic equation r2+1=0.
r1,2=±i
So x0(t) = Asin(t)+Bcos(t)
Partial solution x1(t) may be find in the form x1(t) = Ccos2t+Dtsint+Etcost. Substituting into equation we’ll get
dx1/dt = -2Csin2t+Dsint+Dtcost+Ecost-Etsint
d2x1/dt2 = -4Ccos2t-Dcost+Dcost-Dtsint-Esint-Esint-Etcost = -4Ccos2t-Dtsint-2Esint-Etcost
d2x1/dt2 +x1 = -4Ccos2t-Dtsint-2Esint-Etcost+ Ccos2t+Dtsint+Etcost = -3Ccos2t-2Esint = 8cos2t-4sint
Therefore C = -8/3, D = 0, E = 2 and x1(t) = -8cos(2t)/3+2tcost
General solution of the given equation is x(t) = x0(t)+x1(t) = Asin(t)+Bcos(t)-8cos(2t)/3+2tcost
x(π/2)=-1 => A+8/3 = -1 => A=-11/3
x’(π/2)=0 => -B-π=0 => B=- π
So x(t) = -11sin(t)/3 - π cos(t) - 8cos(2t)/3 + 2tcost
Answer
x(t) = -11sin(t)/3 - π cos(t) - 8cos(2t)/3 + 2tcost
Comments
Leave a comment