Write a function sumprimes(I) that takes as input a list of integers I and retuns the sum of all the prime numbers in l.

Here are some examples to show how your function should work.
>>> sumprimes([3,3,1,13])
19
>>> sumprimes([2,4,6,9,11])
13
>>> sumprimes([-3,1,6])
0

Solution.

def sumprimes(I):
\# Function for check that the number is prime def check_prime(number):
\# Negative numbers and 1 are not simple
if number <2 :
return False
\# Check all dividers before sqrt(number)
for i in range $\left(2\right.$, int(number $\left.{ }^{* *} 0.5\right)+1$):
\# If the number has divisor it is not prime if not number \% i:
return False
return True
\# Sum primes
total $=0$
\# Check all number in the list
for in i:
\# If number is prime add it to result if check_prime(i):
total += i
return total
print(sumprimes([-3,1,6]))
print(sumprimes([2,4,6,9,11]))
print(sumprimes([3,3,1,13]))
print(sumprimes([2,3,5,7,11,13]))
print(sumprimes([1,4,8,9,10]))

