Answer on Question #90432, Physics / Mechanics | Relativity

A force $\vec{F} = 5\hat{\imath} + 3\hat{\jmath}$ act on a body and changes its position from $P_1(4,5)$ to $P_2(-3,6)$ in a plane. Find the work done on the body if the force is in Newton and displacement in meter.

Solution: If $A(x_1, y_1)$ and $B(x_2, y_2)$ be two points

in xy-plane, then the vector joining A and B is given

by

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$
$$\overrightarrow{AB} = (x_2\hat{\imath} + y_2\hat{\jmath}) - (x_1\hat{\imath} + y_1\hat{\jmath})$$
$$\overrightarrow{AB} = (x_2 - x_1)\hat{\imath} + (y_2 - y_1)\hat{\jmath}$$

In the same manner, the displacement vector joining

 $P_1(4,5)$ and $P_2(-3,6)$ is given by

$$\overrightarrow{P_1P_2} = (-3-4)\hat{\imath} + (6-5)\hat{\jmath}$$
$$\overrightarrow{P_1P_2} = -7\hat{\imath} + \hat{\jmath}$$

Force is given by $\vec{F} = 5\hat{\imath} + 3\hat{\jmath}$

Then work done $W = \vec{F} \cdot \overrightarrow{P_1 P_2}$ $W = (5\hat{\imath} + 3\hat{\jmath}) \cdot (-7\hat{\imath} + \hat{\jmath})$ W = -35 + 3 $W = -32 \quad N \cdot m$

Therefore, work done on the body is -32 N.m

Answer provided by https://www.AssignmentExpert.com

