Answer to Question #88246,Physics / Molecular Physics | Thermodynamics

An engine using 1 mol of an ideal gas initially at 21.7 L and 326 K performs a cycle consisting of four steps:

1) an isothermal expansion at 326 K from 21.7L to 42.1 L ;

2) cooling at constant volume to 186 K ;

3) an isothermal compression to its original volume of 21.7L; and

4) heating at constant volume to its original temperature of 326K .

Find its efficiency. Assume that the heat capacity is 21 J/K and the universal gas constant is $0.08206 L \cdot atm/mol/K = 8.314 J/mol/K$.

Answer in units of %.

Solution:n=1, V₁=21.7L

i) At T1=326K, Volume changes from V_1 =21.7L to V_2 =42.1L (Say the path A to B)

It is a constant temperature process where the gases are expanded from volume V_A to V_B . Thus is a isothermal expansion. In this case heat is absorbed by the gas.

Thus work is done by the gas when heat is added.

ii) Cooling at constant volume (Say path B to C). Temperature decreases from T_1 =326K to T_2 =186K.

In this case no any heat is added and since it is constant volume process, the work is done is zero

iii) At temperature T_2 =186K, the volume is decreases from V_C =42.1L to V_D =21.70L(say path C to D. It is a constant temperature process where the gas is compressed from V_2 to V_1 .

Since the volume is decreases so work is done on the gas but no any heat is added.

iv) Heating at constant volume to its original temperature of 326 K (Say path D to A). Volume is constant, but temperature is increases from T_2 =186K to T_1 =326K Work is done on the gas and heat is rejected.

Thus efficiency of the engine= Total work done/Net heat added Path AB, Work done=nRT_{hot}ln(V_B/V_A) Path BC, Work done=0 Path CD, Work done=nRT_{cold}ln(V_D/V_C) Path DA, Work done =0 Heat absorbed, Path AB, Q_1 =W1= nRT_{hot}ln(V_B/V_A) Path DA, Q_4 =C_v deltaT=Cv(T_{hot}-T_{cold})

Efficiency=

$$\left\{ nRT_{hot} \ln \left(\frac{V_B}{V_A} \right) + nRT_{cold} \ln \left(\frac{V_D}{V_C} \right) \right\} / \left\{ nRT_{hot} \ln \left(\frac{V_B}{V_A} \right) + C_v \left(T_{hot} - T_{cold} \right) \right\}$$

$$\left\{ T_{hot} \ln \left(\frac{V_B}{V_A} \right) + T_{cold} \ln \left(\frac{V_D}{V_C} \right) \right\} / \left\{ T_{hot} \ln \left(\frac{V_B}{V_A} \right) + \frac{C_v (T_{hot} - T_{cold})}{nR} \right\}$$

$$\left\{ 326 \ln \left(\frac{42.1}{21.7} \right) + 186 \ln \left(\frac{21.7}{42.1} \right) \right\} / \left\{ 326 \ln \left(\frac{42.1}{21.7} \right) + \frac{21(326 - 186)}{1 \times 8.314} \right\}$$

={326x0.66-186x0.66}/{326×0.66+21x16} =92.4/551.16 =16.76%

Answer provided by https://www.AssignmentExpert.com