## Answer to Question \#88246,Physics / Molecular Physics | Thermodynamics

An engine using 1 mol of an ideal gas initially at 21.7 L and 326 K performs a cycle consisting of four steps:

1) an isothermal expansion at 326 K from 21.7 L to 42.1 L ;
2) cooling at constant volume to 186 K ;

3 ) an isothermal compression to its original volume of 21.7L; and
4) heating at constant volume to its original temperature of 326 K .

Find its efficiency. Assume that the heat capacity is $21 \mathrm{~J} / \mathrm{K}$ and the universal gas constant is $0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} / \mathrm{K}=8.314 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$.

Answer in units of \%.

Solution: $n=1, V_{1}=21.7 \mathrm{~L}$
i) At $\mathrm{T} 1=326 \mathrm{~K}$, Volume changes from $\mathrm{V}_{1}=21.7 \mathrm{~L}$ to $\mathrm{V}_{2}=42.1 \mathrm{~L}$ ( Say the path A to B)

It is a constant temperature process where the gases are expanded from volume $\mathrm{V}_{\mathrm{A}}$ to $\mathrm{V}_{\mathrm{B}}$. Thus is a isothermal expansion. In this case heat is absorbed by the gas.

Thus work is done by the gas when heat is added.
ii) Cooling at constant volume (Say path B to C). Temperature decreases from $\mathrm{T}_{1}=326 \mathrm{~K}$ to $\mathrm{T}_{2}=186 \mathrm{~K}$.

In this case no any heat is added and since it is constant volume process, the work is done is zero
iii) At temperature $T_{2}=186 \mathrm{~K}$, the volume is decreases from $\mathrm{V}_{\mathrm{C}}=42.1 \mathrm{~L}$ to $\mathrm{V}_{\mathrm{D}}=21.70 \mathrm{~L}$ ( say path C to D . It is a constant temperature process where the gas is compressed from $\mathrm{V}_{2}$ to $\mathrm{V}_{1}$.

Since the volume is decreases so work is done on the gas but no any heat is added.
iv) Heating at constant volume to its original temperature of 326 K (Say path D to A ). Volume is constant, but temperature is increases from $T_{2}=186 \mathrm{~K}$ to $\mathrm{T}_{1}=326 \mathrm{~K}$ Work is done on the gas and heat is rejected.

Thus efficiency of the engine= Total work done/Net heat added Path AB,
Work done $=n R T_{\text {hot }} \ln \left(V_{B} / V_{A}\right)$
Path BC,
Work done=0
Path CD,
Work done $=n R T_{\text {cold }} \ln \left(\mathrm{V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{C}}\right)$
Path DA,
Work done $=0$
Heat absorbed,
Path AB,
$\mathrm{Q}_{1}=\mathrm{W} 1=n R T_{\text {hot }} \ln \left(\mathrm{V}_{\mathrm{B}} / \mathrm{V}_{\mathrm{A}}\right)$
Path DA,
$\mathrm{Q}_{4}=\mathrm{C}_{\mathrm{v}}$ deltaT=$=\mathrm{Cv}\left(\mathrm{T}_{\text {hot }}-\mathrm{T}_{\text {cold }}\right)$

Efficiency=

$$
\left\{n R T_{\text {hot }} \ln \left(V_{B} / V_{A}\right)+n R T_{\text {cold }} \ln \left(V_{D} / V_{C}\right)\right\} /\left\{n R T_{\text {hot }} \ln \left(V_{B} / V_{A}\right)+C_{v}\left(T_{\text {hot }}-T_{\text {cold }}\right)\right\}
$$

$$
\left\{T_{\text {hot }} \ln \left(V_{B} / V_{A}\right)+T_{\text {cold }} \ln \left(V_{D} / V_{C}\right)\right\}
$$

$$
\left\{T_{\text {hot }} \ln \left(V_{B} / V_{A}\right)+C_{v}\left(T_{\text {hot }}-T_{\text {cold }}\right) / n R\right\}
$$

$\{326 \ln (42.1 / 21.7)+186 \ln (21.7 / 42.1\}$

$$
\{326 \ln (42.1 / 21.7)+21(326-186) / 1 \times 8.314\}
$$

$=\{326 \times 0.66-186 \times 0.66\} /\{326 \times 0.66+21 \times 16\}$
=92.4/551.16
=16.76\%
Answer provided by https://www.AssignmentExpert.com

