Answer on question \#86636, Physics / Atomic and Nuclear

 Physics:Given:
$\mathrm{A}=a \hat{x}+i b \hat{p}$
Where, a and b are constants and \hat{x} and \hat{p} position and momentum operator.
To find:
[A , $\hat{x}]$ and $[\mathrm{A}, \mathrm{A}]$
Solution:
(1) $[\mathrm{A}, \hat{x}]$
$=[a \hat{x}+i b \widehat{p}$,
$=\mathrm{a}[\hat{x}, \hat{x}]+\mathrm{ib}[\hat{p}, \hat{x}]$
But $[\hat{x}, \hat{x}]=0$ and $[\hat{p}, \hat{x}]=-i \hbar$
$=\mathrm{ib} *(-i \hbar)$
$=b^{*} \hbar$
(2) $[\mathrm{A}, \mathrm{A}]$
$=[a \hat{x}+i b \hat{p}, a \hat{x}+i b \hat{p}]$
$=\mathrm{a}^{\wedge} 2[\hat{x}, \hat{x}]+\operatorname{iab}[\hat{x}, \widehat{p}]+\operatorname{iab}[\widehat{p}, \hat{x}]-\mathrm{b}^{\wedge} 2[\widehat{p}, \widehat{p}]$
$\operatorname{But}[\hat{x}, \hat{x}]=0,[\hat{x}, \widehat{p}]=i \hbar,[\widehat{p}, \hat{x}]=-i \hbar$ and $[\widehat{p}, \widehat{p}]=0$
$=-a b+a b$
$=0$

