Answer on question #86636, Physics / Atomic and Nuclear Physics:

Given:

 $\mathbf{A} = a\hat{x} + ib\hat{p}$

Where, a and b are constants and \hat{x} and \hat{p} position and momentum operator.

To find:

```
[A, \hat{x}] and [A, A]
```

Solution:

(1) [A, \hat{x}] = $[a\hat{x} + ib\hat{p},]$ = $a[\hat{x}, \hat{x}] + ib[\hat{p}, \hat{x}]$ But $[\hat{x}, \hat{x}] = 0$ and $[\hat{p}, \hat{x}] = -i\hbar$ = $ib^*(-i\hbar)$ = $b^*\hbar$

(2) [A, A]
=
$$[a\hat{x} + ib\hat{p}, a\hat{x} + ib\hat{p}]$$

= $a^{2}[\hat{x}, \hat{x}] + iab[\hat{x}, \hat{p}] + iab[\hat{p}, \hat{x}] - b^{2}[\hat{p}, \hat{p}]$
But $[\hat{x}, \hat{x}] = 0, [\hat{x}, \hat{p}] = i\hbar, [\hat{p}, \hat{x}] = -i\hbar$ and $[\hat{p}, \hat{p}] = 0$
= $-ab + ab$
= 0

Answer provided by https://www.AssignmentExpert.com