
Answer on question #85866 - Physics / Mechanics | Relativity

A 10 kg object is spun around in a circle by a rope horizontally above the ground. The length of the rope is currently 5 m. How much more or less force is needed to maintain a velocity of 12 m/s if the rope is extended by 3 m?

Solution

1) Figure

2) 2nd Newton's law

$$\vec{T} + \overline{m}\vec{g} = \overline{m}\vec{a}$$

3) Acceleration

$$a = \frac{mv^2}{R}$$

Where

$$R = lsin(\alpha)$$

4) Since, from the vectors having a right triangle, then the force T

$$T = \sqrt{(mg)^2 + (ma)^2}$$

$$T = \sqrt{(mg)^2 + \left(\frac{mv^2}{lsin(\alpha)}\right)^2}$$

$$T = m\sqrt{g^2 + \left(\frac{v^2}{lsin(\alpha)}\right)^2}$$

- 5) Define α when l = 5 m and force in this case
 - a. Define α

$$tan(\alpha) = \frac{v^2}{gR} = \frac{v^2}{glsin(\alpha)}$$
$$\frac{v^2}{gl} = \frac{1 - \cos^2(\alpha)}{\cos(\alpha)}$$

i. variable replacement

$$cos(\alpha) = x$$

Then

$$x^{2} + \frac{v^{2}}{gl}x - 1 = 0$$

$$x^{2} + \frac{144}{10 * 5}x - 1 = 0$$

$$x^{2} + 2,88x - 1 = 0$$

Solution for this

$$x_{1,2} = \frac{-2,88 \pm \sqrt{2,88^2 + 4}}{2}$$
$$x_1 = 0,31; x_2 = -3,2$$

 $cos(\alpha)$ —can not be > 1 in this way

$$\alpha = \arccos(0.31) = 72^{\circ}$$

b. Force T

$$T = m \sqrt{g^2 + \left(\frac{v^2}{l\sin(\alpha)}\right)^2}$$

$$T = 10 \sqrt{10^2 + \left(\frac{144}{5 * \sin(72)}\right)^2} = 320 (N)$$

- 6) Define α when l = 8 m and force in this case
 - a. Define α

$$tan(\alpha) = \frac{v^2}{gR} = \frac{v^2}{glsin(\alpha)}$$
$$\frac{v^2}{gl} = \frac{1 - \cos^2(\alpha)}{\cos(\alpha)}$$

i. variable replacement

$$\cos(\alpha) = x$$

Then

$$x^{2} + \frac{v^{2}}{gl}x - 1 = 0$$

$$x^{2} + \frac{144}{10 * 8}x - 1 = 0$$

$$x^{2} + 1.8x - 1 = 0$$

Solution for this

$$x_{1,2} = \frac{-1.8 \pm \sqrt{1.8^2 + 4}}{2}$$
$$x_1 = 0.44; x_2 = -2.24$$

 $cos(\alpha)$ —can not be > 1

in this way

$$\alpha = \arccos(0.44) = 64^{\circ}$$

b. Force T

$$T = m \sqrt{g^2 + \left(\frac{v^2}{lsin(\alpha)}\right)^2}$$

$$T = 10\sqrt{10^2 + \left(\frac{144}{8 * sin(64)}\right)^2} = 224 (N)$$

Answer:

- 1) When length 5 m, force 320 N
- 2) When length 8 m, force 224 N It needs less force

Answer provided by https://www.AssignmentExpert.com