Question:

The wavefunction for a particle is defined by:
$\psi(\mathrm{x})=\{\mathrm{N} \cos (2 \pi \mathrm{x} / \mathrm{L})$ for $-\mathrm{L} / 4 \leq \mathrm{x} \leq \mathrm{L} / 4$
0 otherwise

Determine

i) the normalization constant N , and
ii) the probability that the particle will be found between $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{L} / 8$. $(5+5)$

Solution:

By entering $t=2 x+0.5 \mathrm{~L}$, we get its range $[0 ; \mathrm{L}]$ and the wavefunction $\psi(\mathrm{t})=\mathrm{N} \sin (\pi \mathrm{t} / \mathrm{L})$. In this case $N=\sqrt{\frac{2}{L}}$ and the probability
$p=\frac{0.75 L-0.5 L}{L}-\frac{\sin 2 \pi \cdot 0.75-\sin 2 \pi \cdot 0.5}{6.28}=0.25+0.16=0.41$

The answer:

The normalization constant $N=\sqrt{\frac{2}{L}}$
The probability $\mathrm{p}=0.41$

