Answer on Question \#83964, Physics / Molecular Physics | Thermodynamics

Question:

The system shown in figure consist of three spring and two rods as shown. If the temperature of the rods is increased by T , calculate the energy stored in each of the springs.The spring are relaxed

Solution:

Owing to the lack of a figure let's suppose the springs and rods are connected as below.

Then after the temperature of the rods is increased by T, the rod length increment is $\delta=\alpha l T, \alpha$ - linear thermal expansion coefficient, 1 - rod length. In this case energy saved in the spring 3 equals to $E_{3}=\frac{k(2 \delta)^{2}}{2}=2 k(\alpha l T)^{2}$, in the springs 1 and 2 each $E_{1}=\frac{k(\delta / 2)^{2}}{2}=0.125 k(\alpha l T)^{2}, \mathrm{k}$ is stiffness coefficient.

The answer:
$E_{3}=2 k(\alpha l T)^{2}, E_{1}=0.125 k(\alpha l T)^{2}$, designations see above.
Answer provided by https://www.AssignmentExpert.com

