A system of particles occupying single-particle levels and obeying Maxwell–Boltzmann statistics is in thermal contact with a heat reservoir at temperature *T*. If the population distribution in the non-degenerate energy levels with energies 21.5×10^{-3} eV, 12.9×10^{-3} eV and 4.3×10^{-3} eV are 8.5%, 23% and 63%, respectively, what is the average temperature of the system?

Solution:

Denote the energy levels by $E_1 = 21.5 \times 10^{-3}$ eV, $E_2 = 12.9 \times 10^{-3}$ eV and $E_3 = 4.3 \times 10^{-3}$ eV, and the corresponding populations by $P_1 = 8.5\%$, $P_2 = 23\%$ and $P_3 = 63\%$. In thermal distribution with Maxwell–Boltzmann statistics, the populations P_i and P_j on the respective levels E_i and E_j are related as

$$\frac{P_i}{P_j} = e^{\frac{E_j - E_i}{kT}},$$

where $k = 8.6 \times 10^{-5} \text{ eV/K}$ is the Boltzmann constant. Taking the logarithm of this relation, we obtain $(E_j - E_i)/(kT) = \log(P_i/P_j)$, whence $T = (E_j - E_i)/(k\log(P_i/P_j))$. Substituting for *i* and *j* any pair of numbers from {1, 2, 3}, we obtain the sought answer. Thus, $T = (E_1 - E_2)/(k\log(P_2/P_1)) \approx 100K$.

Answer: 100 K.

Answer provided by https://www.AssignmentExpert.com