Answer on Question \# 83102, Physics / Quantum Mechanics

Question 1. A minimum force $5 N$ is required to make a body of mass 2 kg move on a horizontal floor. But a force $4 N$ is required to maintain its motion with a uniform velocity. Calculate coefficient of static friction and coefficient of kinetic friction.

Solution 1. Coefficient of static friction is $\mu_{s}=F_{\min } / m g=4 /(2 \cdot 10)=0.2$. Coefficient of kinetic friction is $\mu_{k}=F / F_{N}=F / m g=5 /(2 \cdot 10)=0.25$.

Question 2. A box of mass 70 kg is pulled by a horizontal force of 500 N on the surface of the floor. When the box moves, the co-efficient of friction between the floor and the box is 0.5. Calculate the acceleration of the box.

Solution 2. $F-\mu m g=m a \Rightarrow a=F / m-\mu g=500 / 70-0.5 \cdot 10=15 / 7 \approx 2.143 \mathrm{~m} / \mathrm{s}^{2}$.
Question 3. The mass of metal sphere is 6 g . it is rotated 4 times per sec by fastening it at the end of a thread length 3 m . What is its angular momentum?

Solution 3. $\omega=2 \pi f, I=m r^{2} \Rightarrow L=I \omega=m r^{2} \cdot 2 \pi f=6 \cdot 10^{-3} \cdot 3^{2} \cdot 2 \pi \cdot 4 \approx 1.36 m^{2}$. kg / s.

Question 4. A wheel weighing 5 kg and radius of gyration about an axis is 0.2 m . What is its moment of inertia? In order to produce angular acceleration of $2 \mathrm{rad} / \mathrm{s}^{2}$ in the wheel. What magnitude of torque is to be applied?

Solution 4. Moment of inertia is $I=m r^{2}=5 \cdot 0.2=1 \mathrm{~kg} \cdot \mathrm{~m}^{2}$. Magnitude of torque is $M=I \frac{d \omega}{d t}=1 \cdot 2=2 N \cdot m$.

