Task #81292

A crate of mass 30.0 kg is pulled by a force of 180 N up an inclined plane which makes an angle of 30° with the horizon. The coefficient of kinetic friction between the plane and the crate is $\mu k = 0.225$. If the crates starts from rest, calculate its speed after it has been pulled 15.0 m. Draw the free body diagram. **Solution.**

Free body diagram for body.

Newton Second Low is:

 $mg + N + F + f_k = ma$

 $f_k = \mu_k N = \mu_k mg^* \cos \alpha$ (N = mg)

ma = F-mg*sin α - μ_k *mg*cos α

a = (F-mg*sin α - μ_k *mg*cos α)/m

a = (180 - 30*9.8*0.5-0.225*30*9.8*0,87)/30 = (180-147-57.5505)/30 = -0.81 m/s²

This mean that crate will stay at rest. Force = 180 N and it compensates weigh projection on x-axis mg*sin $\alpha \approx 150$ N, but there is not so much to overcome the friction force, which is μ_k *mg*cos $\alpha \approx 58.45$ N

Answer:

Crate will stay at rest.

Answer provided by https://www.AssignmentExpert.com