Answer on Question #81251 Physics / Mechanics

The speed of sound v in a medium depends on its wavelength λ , the young modulus *E*, and the density ρ , of the medium. Use the method of dimensional analysis to derive a formula for the speed of sound in a medium.

 $\nu = \lambda^{\alpha} E^{\beta} \rho^{\gamma}$

Solution:

Let

Since

 $[\lambda] = [m] = L$ [E] = [Pa] = ML⁻¹T⁻² [\rho] = [kg/m³] = ML⁻³ [\nu] = [m/s] = LT⁻¹

We get

$$LT^{-1} = L^{\alpha} (ML^{-1}T^{-2})^{\beta} (ML^{-3})^{\gamma}$$

0r

(α	$-\beta - 3\gamma = 1$	
}	$\beta + \gamma = 0$	
($-2\beta = -1$	

The solution of this system of linear equations

$$\begin{cases} \alpha = 0\\ \beta = 1/2\\ \gamma = -1/2 \end{cases}$$

Therefore

$$v = \lambda^0 E^{1/2} \rho^{-1/2} = \sqrt{\frac{E}{\rho}}$$

Answer: $v = \sqrt{\frac{E}{\rho}}$

Answer provided by https://www.AssignmentExpert.com