

**Question #80165, Physics / Other**

In a circular accelerator a proton is accelerated to an energy of  $10^{12}$  eV, as measured in the laboratory frame. If the rest energy of the proton is  $10^9$  eV, calculate

- i) the speed of the proton as measured in the laboratory frame
- ii) the force that must be applied by the magnets in the accelerator to keep the protons moving at this speed in a circle of radius 1000 m.

**Solution**

i)

$$E = \frac{E_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$1 - \frac{v^2}{c^2} = \left(\frac{E_0}{E}\right)^2$$

$$v = c \sqrt{1 - \left(\frac{E_0}{E}\right)^2}$$

$$v = 299792458 \sqrt{1 - \left(\frac{10^9}{10^{12}}\right)^2} = 299792308 \frac{m}{s}$$

ii)

$$F = \frac{mv^2}{r}$$

$$F = \frac{1.672621898 \cdot 10^{-27}}{1000} (299792308)^2 = 1.50 \cdot 10^{-13} N.$$

Answer provided by <https://www.AssignmentExpert.com>