Answer on Question 79559, Physics, Other

Question:

1) A 100 kW electric heater heats up 100 L of water at 20°C for 2 minutes. If 1 L of water has a mass of 1 kg find the final temperature of water. Specific heat capacity of water is 4200 $J/kg \cdot {}^{\circ}C$.

Solution:

Let's first find the quantity of heat that the water needs in order to reach the final temperature during 2 minutes:

$$Q = mc\Delta t = mc(T_{final} - T_{initial}),$$

here, m=100~kg is the mass of the water, $c=4200~J/kg\cdot ^{\circ}C$ is the specific heat capacity of the water, $T_{initial}=20^{\circ}C$ is the initial temperature of the water and T_{final} is the final temperature of the water.

From the other hand, we can write:

$$Q = Pt$$
,

here, Q is the quantity of heat that the water needs in order to reach the final temperature during time $t = 2 \min$ and P = 100 kW is the power of the electric heater.

Finally, we can equate both expressions and find the final temperature of the water:

$$mc(T_{final} - T_{initial}) = Pt,$$

$$T_{final} = \frac{Pt}{mc} + T_{initial} = \frac{10^5 W \cdot 2 \cdot 60 s}{100 kg \cdot 4200 \frac{J}{kg \cdot {}^{\circ}\text{C}}} + 20^{\circ}\text{C} = 48.6^{\circ}\text{C}.$$

Answer:

$$T_{final} = 48.6$$
 °C.

2) A store hotplate is rated at $1 \, kW$. How long will it take for $1.5 \, L \, (1.5 \, kg)$ of water initially at 10° C to start to boil. Specific heat capacity of water is $4200 \, J/kg \cdot {^{\circ}}$ C.

Solution:

We can find the quantity of heat that the water needs to start to boil from the formula:

$$Q = mc\Delta t = mc(T_{final} - T_{initial}),$$

here, m=1.5~kg is the mass of the water, $c=4200~J/kg\cdot ^{\circ}\text{C}$ is the specific heat capacity of the water, $T_{initial}=10^{\circ}\text{C}$ is the initial temperature of the water and $T_{final}=100^{\circ}\text{C}$ is the final temperature of the water.

From the other hand, we can write:

$$Q = Pt$$
,

here, Q is the quantity of heat that the water needs to start to boil, P = 1 kW is the power of the store hotplate and t is the time that the water needs to start to boil.

Finally, we can equate both expressions and find the time that the water needs to start to boil:

$$mc(T_{final} - T_{initial}) = Pt,$$

$$t = \frac{mc(T_{final} - T_{initial})}{P} = \frac{1.5 \ kg \cdot 4200 \ \frac{J}{kg \cdot {}^{\circ}\text{C}} \cdot (100 \, {}^{\circ}\text{C} - 10 \, {}^{\circ}\text{C})}{10^{3} \ W} = 567 \ s = 9.45 \ min.$$

Answer:

t = 567 s = 9.45 min.

Answer provided by https://www.AssignmentExpert.com