Question. A 2100 kg of a rectangular box is suspended from a height of 15 m. What is the minimum force required to displace a hanging object at a particular degree? **Given.** m = 2100 kg; l = 15 m. **Find.** F = f(x).**Solution**

For small angles

 $F = T \sin \alpha$ $mg = T \cos \alpha$

We have

 $\frac{F}{mg} = \frac{\sin \alpha}{\cos \alpha} \rightarrow \frac{F}{mg} = \tan \alpha \rightarrow F = mg \tan \alpha \approx mg \sin \alpha = mg \frac{x}{l} = 2100 \cdot 9.8 \cdot \frac{x}{15} = 1372 \cdot x$

If $\alpha = 1^{\circ} = 0.0174 \, rad$ then $x = 0.0174 \cdot 15 = 0.262 \, m$ and

$$F = 1372 \cdot 0.262 = 359 N$$

Answer. $F = mg \frac{x}{l} = 1372 \cdot x.$

Answer provided by https://www.AssignmentExpert.com