Answer on Question #79267 - Physics - Other

A 5 kg block slides down a plane inclined at 30° to horizontal. Find the acceleration of the block if the plane is frictionless.

## Solution.



Let the axes of the Cartesian coordinate system have the directions shown in the figure.

Use the 2<sup>nd</sup> Newton's law:

$$\vec{F} = m\vec{a},$$

where m is the mass of an object,  $\vec{F}$  is the vector sum of all the forces acting on the object,  $\vec{a}$  is its acceleration.

In this case, two forces act on the block: the force of gravity (or weight)  $\vec{W}$  and the normal force  $\vec{N}$ . The force of gravity is equal  $m\vec{g}$  and directed down (g is the gravitational field strength; it is about 9.81 m/s<sup>2</sup> on Earth). The normal force  $\vec{N}$  is perpendicular to the surface that an object contacts.

The 2<sup>nd</sup> law of Newton can be written as  $\vec{W} + \vec{N} = m\vec{g} + \vec{N} = m\vec{a}$ 

Write the component form of Newton's second law. Note that the block moves along the x-axis, and the acceleration has only the x component.

$$\begin{cases} F_x = ma_x = ma \\ F_y = ma_y = 0 \end{cases}$$
$$F_x = W_x + N_x = mg \sin \alpha$$
$$F_y = W_y + N_y = mg \cos \alpha + N$$



To find the acceleration, we need only the equation for the x component of the resultant force.

$$mg \sin \alpha = ma$$
$$a = g \sin 30^{\circ}$$
$$a = 9.8 \frac{m}{s^2} \times 0.5 = 4.9 \frac{m}{s^2}$$

Answer:  $a = 4.9 \frac{\text{m}}{\text{s}^2}$ 

Answer provided by <u>https://www.AssignmentExpert.com</u>