A particle moves under the action of a central force. Show that:

(i) its angular momentum is constant and

(ii) its motion is confined to a plane.

Solution:

The equation of circular motion of a body under a torque $\vec{\tau}$ is given by

$$\vec{\tau} = \frac{d\vec{L}}{dt},$$

where \vec{L} – angular momentum of the body.

Since a central force $\vec{F_c}$ is parallel to the radius-vector \vec{r} of the body (directed from the force's center to the body), its torque is zero:

$$\overrightarrow{\tau_c} = \overrightarrow{r} \times \overrightarrow{F_c} = \overrightarrow{0}$$

Thus

$$\frac{d\vec{L}}{dt} = \vec{\tau_c} = \vec{0} \ \Rightarrow \vec{L} = const$$

Since \vec{L} is constant, it doesn't change it direction. It means that the motion of the body is confined to a plane perpendicular to vector \vec{L} , otherwise the direction of \vec{L} will change, which is forbidden by the mentioned condition.

Answer provided by https://www.AssignmentExpert.com