Answer on Question #78048 Physics / Other

The nuclear force between two neutrons in a nucleus is described by the Yukawa potential $U(r) = -U_0 r_0 / r \exp(-r/r_0)$ where r is the distance between neutrons and U_0 and r_0 are constants. Determine the force $\mathbf{F}(\mathbf{r}) = -\nabla U(r)$.

Solution:

The force between two neutrons in a nucleus

$$\mathbf{F}(r) = -\nabla U(r) = U_0 r_0 \nabla \left[\frac{\exp\left(-\frac{r}{r_0}\right)}{r} \right] = U_0 r_0 \left[-\frac{\exp\left(-\frac{r}{r_0}\right)}{r_0 r} \hat{\mathbf{r}} - \frac{\exp\left(-\frac{r}{r_0}\right)}{r^2} \hat{\mathbf{r}} \right]$$
$$= -U_0 \exp\left(-\frac{r}{r_0}\right) \left[\frac{1}{r} + \frac{r_0}{r^2} \right] \hat{\mathbf{r}},$$

where $\hat{\mathbf{r}} = \mathbf{r}/r$

Answer: $\mathbf{F}(r) = -U_0 \exp\left(-\frac{r}{r_0}\right) \left[\frac{1}{r} + \frac{r_0}{r^2}\right] \hat{\mathbf{r}}.$

Answer provided by https://www.AssignmentExpert.com