
Answer on Question # 76567, Physics - Electric Circuits:

Question: A horizontal rod of mass 10 kg and length 12 m is hinged to a wall at one end and support end by a cable which makes an angle 30° with the rod at its other end. Calculate tension in the cable and force exerted by hinge.

Solution:

Here, M = 10 kg is the mass of the rod, g = 9.8 m/sec² is the acceleration due to gravity, L = 12 meter is the length of the rod, T is the tension in the cable and α =30° is the angle which the cable makes with the rod.

Now, from the diagram we get,

Mg = 2T
$$\sin \alpha$$

Or,
$$T = \frac{Mg}{2 \sin \alpha}$$
(1)

Put the value of M, g and α in equation (1), we get,

$$T = 98 N$$

Now, x- component of force is a = T cos α = 85 N. [Put the value of T and α]

Again, y-component of force is $b = Mg - T \sin \alpha = 49 \text{ N}$ [Put the value of T, α , M and g]

So, total force $F = \sqrt{a^2 + b^2} = 98 \text{ N}$. [Put the value of a and b]

Answer: Tension is 98 N and force is 98 N.

Answer provided by https://www.AssignmentExpert.com