Answer on Question \#76235 Physics / Atomic and Nuclear Physics

An object starts from rest and accelerates for $a=0.24$ meter per second square for $t_{1}=2$ minutes and continues at a steady speed for $t_{2}=3$ minutes and slow down to stop for $t_{3}=1$ minute. A) Draw graph for the motion. B) Calculate the maximum velocity in $\mathrm{km} / \mathrm{hr}$. C) Determine the retardation. D) Find the displacement in 5 minutes.

Solution:

A)

B) $v_{\max }=a t_{1}=0.24 \times 2 \times 60=28.8 \frac{\mathrm{~m}}{\mathrm{~s}}=103.68 \frac{\mathrm{~km}}{\mathrm{~h}}$
C) $a_{3}=\frac{0-v_{\text {max }}}{t_{3}}=\frac{0-28.8}{60}=-0.48 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
D) $s=\frac{v_{\text {max }}}{2} t_{1}+v_{\text {max }} t_{2}=\frac{28.8}{2} \times 2 \times 60+28.8 \times 3 \times 60=6912 \mathrm{~m}$

Answers: $103.68 \frac{\mathrm{~km}}{\mathrm{~h}},-0.48 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}, 6912 \mathrm{~m}$
Answer provided by https://www.AssignmentExpert.com

