Answer on Question #75888, Physics / Mechanics | Relativity

Find the elevation h (km) where the weight of an object one-tenth its weight on the surface of the earth.

Solution

To answer this question we should use the Law of Universal Gravitation:

We have two objects: the Earth and an object, as the Earth has significant size r - is distance between centers of these objects. Radius of Earth is $R_E = 6378$ km. The unknown elevation is h. Then $r = R_E + h$ and formula for F_{GRAV} is:

$$F_{GRAV} = \frac{Gm_Em_2}{(R_E + h)^2}$$

Gravitation force acting on object is it's weight $w = F_{GRAV}$ Weight of an object the surface of the earth is:

$$w = \frac{Gm_Em_2}{R_E^2}$$

Weight of an object at elevation h is:

 Gm_Em_2

w_h=-----

 $(R_{E} + h)^{2}$

We know that $w_h = w/10$, then:

Gm _E m ₂	Gm _E m ₂
(R _E + h) ²	10·R _E ²
$10 \cdot R_E^2$	
==1; (R _E +h) ²	

$$\frac{\sqrt{10 \cdot R_E}}{(R_E + h)}^2 - 1 = 0$$

 $\sqrt{10} \cdot R_E - R_E$ -h = 0 or $\sqrt{10} \cdot R_E$ + R_E + h = 0;

 $2.16R_E = h \text{ or } 4.16R_E = -h;$

As h >0, h = 2.16R_E = 2.16·6378 = 13776.48 (km).

Answer: 13776.48 km

Answer provided by https://www.AssignmentExpert.com