Answer on Question #75214, Physics / Mechanics | Relativity

The volume V of liquid that flows through a pipe in time t is given by the equation

$$\frac{V}{t} = \frac{\pi P r^4}{8Cl}$$

where P is a pressure difference between the end of the pipe of radius r and the length L. The constant C depends on the frictional effects of the liquid.

Determine the base unit of C.

Solution:

V units: m³

V / t units: $m^3 s^{-1}$

Pressure units (allow use of P = F/A): $kg \cdot m \cdot s^{-2} / m^2 = kg \cdot s^{-2} / m$

Clear substitution of units for P, r^{4} , l

$$C = \frac{\pi P r^4 t}{8Vl}$$

$$C = \frac{\mathrm{kg} \cdot \mathrm{s}^{-2} \cdot \mathrm{m}^4 \cdot \mathrm{s}}{\mathrm{m} \cdot \mathrm{m}^3 \cdot \mathrm{m}} = \frac{\mathrm{kg} \cdot \mathrm{s}^{-1}}{\mathrm{m}} = \mathrm{kg} \ \mathrm{m}^{-1} \ \mathrm{s}^{-1}$$

Answer: kg m⁻¹ s⁻¹

Answer provided by https://www.AssignmentExpert.com