Answer on Question # 75150, Physics - Electric Circuits:

Question: How one can determine the effective mass from the hall resistance in a constant temperature and different magnetic field? And how is it possible to find the g-factor from hall resistance?

Solution: We know hall resistance $R = \frac{h}{e^2}$, where h= Planck's constant and e = electron charge.

Again effective mass
$$m^*=rac{\mathrm{h}^2}{4\pi^2(rac{\mathrm{d}^2\mathrm{E}}{\mathrm{d}\mathrm{k}^2})}$$
(1)

Put the value of h from hall resistance in equation (1), we get, $m^*=rac{R^2e^4}{4\pi^2(rac{d^2E}{dk^2})}$

Polarised field $B=(\frac{h^2}{2\pi.\mu_B})(\frac{n}{m^*g})$ (2), where g=g-factor, $\mu_B=B$ ohr magneton, n=n th state, $m^*=e$ ffective mass.

Now equation (2) can be written in the form $g=(\frac{h^2}{2\pi.\mu_B})(\frac{n}{m^*B})=(\frac{R^2e^4}{2\pi.\mu_B})(\frac{n}{m^*B})$ where ,R is the hall resistance.

Answer:
$$m^* = \frac{R^2 e^4}{4\pi^2 (\frac{d^2 E}{d k^2})}$$
 and $g = (\frac{R^2 e^4}{2\pi . \mu_B})(\frac{n}{m^* B})$

Answer provided by https://www.AssignmentExpert.com