Answer on Question \#75088, Physics / Molecular Physics | Thermodynamics

The molar heat capacities of a gas at constant pressure and constant volume are $28.8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ and $20.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ respectively. Calculate the gas constant.

Answer:

In the adiabatic process, the adiabatic exponent is

$$
\gamma=1+\frac{R}{c_{V}}
$$

We know the adiabatic index

$$
\gamma=\frac{c_{p}}{c_{V}}
$$

We compare these two equations

$$
\frac{c_{p}}{c_{V}}=1+\frac{R}{c_{V}}
$$

We get

$$
\begin{gathered}
R=c_{p}-c_{V} \\
R=28.8 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}-20.5 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}
\end{gathered}
$$

Answer: $8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Answer provided by https://www.AssignmentExpert.com

