Question #75075, Physics / Electromagnetism |

A be am of ion with 2×100000 m/s enters normally into a uniform magnetic field of 4/100 T. If the specific charge of the ions is 5×10000000 C/kg, the radius of the circular path described will be (1) 0.10m (2) 0.16 m. (3) 0.20m (4) 0.25 m.

Need to find:

D 0

$$\boldsymbol{v} = 2 \times 10^5 \, \frac{m}{s}$$
$$\boldsymbol{B} = \frac{4}{100} \, T$$
$$\frac{q}{m} = 5 \times 10^7 \, \frac{C}{kg}$$

Solution:

Lorentz force – (in Picture) $F_L = F_c$, where $F_L = qvB$, and $F_c = m\frac{v^2}{R}$. $m\frac{v^2}{R} = qvB \rightarrow m\frac{v}{R} = qB \rightarrow R = \frac{m}{q}\frac{v}{B}$. $\frac{m}{q} = \frac{1}{q/m}$. $R = \frac{1}{5 \times 10^7} \frac{2 \times 10^5}{4/100} = \frac{1}{5 \times 10^7} \frac{2 \times 10^7}{4} = \frac{2}{5 \cdot 4} = \frac{2}{20} = \frac{1}{10} = 0.10 \ (m)$

Answer: (1) – R =0.10 m.

