Answer on Question # 74787, Physics -Mechanics -Relativity:

Question: A particle of rest mass m_0 has a speed v= 0.8c. Find its relativistic momentum, its kinetic energy and total energy.

Solution: Rest mass of the particle = m_0

Speed of the particle v = 0.8c, where c = speed of light.

Now consider a constant $\beta = \frac{v}{c} = 0.8$

And $\sqrt{1-\beta^2}$ = 0.6

We know relativistic momentum p = $\frac{m_0 \times v}{\sqrt{1-\beta^2}} = \frac{m_0 \times 0.8c}{0.6} = 1.33 \text{ m}_0 c$

Again relativistic kinetic energy T = $\frac{m_{0\times}c^2}{\sqrt{1-\beta^2}} - m_0c^2 = m_0c^2(\frac{1}{\sqrt{1-\beta^2}} - 1)$ = $m_0c^2(\frac{1}{0.6} - 1) = 0.67 m_0c^2$ Now total relativistic energy E = $\sqrt{(m^2c^2 + m^2c^4)} = \sqrt{(17689 m^2c^4 + m^2c^4)}$

Now, total relativistic energy E = $\sqrt{(p^2c^2 + m_0^2c^4)} = \sqrt{(1.7689 m_0^2c^4 + m_0^2c^4)}$ =1.664 m₀c².

Answer: So, relativistic momentum is 1.33 $m_0 c$, kinetic energy 0.67 $m_0 c^2$ and total energy 1.664 $m_0 c^2$.

Answer provided by https://www.AssignmentExpert.com