Question #74684, Physics / Electromagnetism |

An electron of mass 0.90×10 power -30 kg under the action of a magnetic force moves in a circle of 2.0 cm radius at a speed of 3.0×10 power 6m/sec . if proton of mass 1.8×10 power -27 kg were to move in circle of the same radius and if it were acted upon by the same magnetic field then its speed will be $(1)3.0\times10$ power 6 m/sec (2) 1.5×10 power 3m/sec (3) 6×10 power 4m/sec (4) can not be estimated from given data .

Need to find v_p -?

$$m_e = 9.0 \times 10^{-31} \ kg$$
 $m_p = 1.8 \times 10^{-27} \ kg$
 $v_e = 3.0 \times 10^6 \ m/s$
 $|q_e| = |q_p| = 1.6 \times 10^{-19} \ C$
 $R = 2.0 \ cm = 2.0 \times 10^{-2} \ m$

Solution:

Lorentz force $F_L = evB$, from picture can be seen, that $F_L = F_c$.

$$m rac{v^2}{r} = evB o B = rac{m_e v_e}{q_e R}$$
. Let's calculate B : $B = rac{9.0 ext{x} 10^{-31} \cdot 3.0 ext{x} 10^6}{1.6 ext{x} 10^{-19} \cdot 2.0 ext{x} 10^{-2}} = 8.4 ext{x} 10^{-4} T$. For proton $-v_p = rac{q_p}{m_p} BR = rac{1.6 ext{x} 10^{-19}}{1.8 ext{x} 10^{-27}} \cdot 8.4 ext{x} 10^{-4} \cdot 2.0 ext{x} 10^{-2} = 1,5 ext{x} 10^3$.

The sign of the charge of particles, affects only the direction of force of Lorentz.

Answer: (2) - $v_p = 1.5 \times 10^3 \ m/_S$.

Answer provided by https://www.AssignmentExpert.com