A 2500-kg truck traveling at 40 km/h strikes a brick wall and comes to a stop in 0.2 s.

(a) What is the change in momentum?

Solution.

 $J = F \cdot \Delta t = mV - mV_0$ $J = 2500 \cdot (0 - 40) = -100000 \text{ kg} \cdot \text{m/s} (\text{N} \cdot \text{s})$ **Answer:** $J = -100000 \text{ kg} \cdot \text{m/s} (\text{N} \cdot \text{s})$

(b) What is the impulse?

Answer: Impulse is a term that quantifies the overall effect of a force acting over time. It is conventionally given the symbol J and expressed in Newton-seconds.

For a constant force, $J = F \cdot \Delta t$

(c) What is the average force on the wall during the crash?

Solution.

$$F_{av} = \frac{(mV - mV_0)}{\Delta t}$$
$$F_{av} = \frac{(2500 \cdot 0 - 2500 \cdot 40)}{0.2} = -500000 \ N \cdot s$$

Answer: Fav = $-500000 \text{ N} \cdot \text{s}$

Answer provided by https://www.AssignmentExpert.com