Question. 1) How fast should you throw an apple straight down from 40 m up so that its impact speed would be the same as a mango's dropped from 60 m ?
2) A car accelerates uniformly at $1.5 \mathrm{~m} / \mathrm{s}^{2}$ from rest to $22 \mathrm{~m} / \mathrm{s}$. Then the brakes are applied and it stops $2.5 s$ later. Find the total distance travelled.
Given. $h_{1}=40 \mathrm{~m} ; h_{2}=60 \mathrm{~m} ; a=1.5 \mathrm{~m} / \mathrm{s}^{2} ; v=22 \mathrm{~m} / \mathrm{s} ; t=2.5 \mathrm{~s}$.
Find. 1) $u-$? and 2) $s-$?

Solution.

1) For an apple

$$
2 h_{1} g=v^{2}-u^{2}
$$

For a mango

$$
2 h_{2} g=v^{2}
$$

We have

$$
\begin{gathered}
2 h_{2} g-2 h_{1} g=v^{2}-v^{2}+u^{2} \rightarrow 2 g\left(h_{2}-h_{1}\right)=u^{2} \rightarrow \\
u=\sqrt{2 g\left(h_{2}-h_{1}\right)}=\sqrt{2 \cdot 9.8 \cdot(60-40)}=19.8 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Answer. $u=19.8 \mathrm{~m} / \mathrm{s}$.
2) The total distance travelled

$$
s=s_{1}+s_{2}
$$

For s_{1}

$$
s_{1}=\frac{v^{2}-v_{0}^{2}}{2 a}=\frac{v^{2}}{2 a}=\frac{22^{2}}{2 \cdot 1.5}=161.3 \mathrm{~m} .
$$

For s_{2}

$$
\begin{gathered}
s_{2}=v_{0} t-\frac{a t^{2}}{2} \\
v=v_{0}-a t \rightarrow v_{0}=a t \rightarrow a=\frac{v_{0}}{t}=\frac{22}{2.5}=8.8 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

So,

$$
\begin{gathered}
s_{2}=v_{0} t-\frac{a t^{2}}{2}=22 \cdot 2.5-\frac{8.8 \cdot 2.5^{2}}{2}=27.5 \mathrm{~m} \\
s=s_{1}+s_{2}=161.3+27.5=188.8 \mathrm{~m}
\end{gathered}
$$

Answer. $s=188.8 \mathrm{~m}$.
Answer provided by https://www.AssignmentExpert.com

