Answer on Question #69082 Physics / Electromagnetism

The capacitance of a parallel plate capacitor is increased by a factor of 5 when a dielectric material fills the space between its plates. What is the relative permittivity of the dielectric material? If this material is placed in between the plates of a cylindrical capacitor of outer and inner radii b=12 cm and a=10 cm respectively, calculate the capacitance per unit length of the cylindrical capacitor.

Solution:

The capacitance of a parallel plate capacitor is

$$C = \frac{\varepsilon \varepsilon_0 A}{d}.$$

Thus the relative permittivity of the dielectric material is $\varepsilon = 5$.

The capacitance of cylindrical capacitor

$$C = \frac{2\pi\varepsilon\varepsilon_0 L}{\ln(b/a)}.$$

So the capacitance per unit length of the given cylindrical capacitor is

$$\frac{C}{L} = \frac{2\pi\varepsilon\varepsilon_0}{\ln(b/a)} = \frac{2\times 3.14\times 5\times 8.85\times 10^{-12}}{\ln\left(\frac{12}{10}\right)} = 1.52 \text{ nF}.$$

Answers: $\varepsilon = 5$, $\frac{c}{L} = 1.52 \text{ nF}$.

Answer provided by https://www.AssignmentExpert.com