Answer on Question 68933, Physics, Atomic and Nuclear Physics

Question:

What is the total number of neutrons in 10 g of $\mathrm{D}_{2} \mathrm{O}$?

Solution:

Let's first find the molar mass of the deuterium oxide:

$$
M_{D_{2} O}=M_{D_{2}}+M_{O}=2 \cdot\left(2 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)+16 \mathrm{~g} \cdot \mathrm{~mol}^{-1}=20 \mathrm{~g} \cdot \mathrm{~mol}^{-1} .
$$

Then, we can find the number of moles of deuterium oxide molecules in 10 g of $\mathrm{D}_{2} \mathrm{O}$:

$$
n=\frac{m_{D_{2} O}}{M_{D_{2} O} O}
$$

here, $m_{D_{2} O}$ is the mass of $D_{2} O, M_{D_{2} O}$ is the molar mass of the deuterium oxide.
Then, we get:

$$
n=\frac{m_{D_{2} O}}{M_{D_{2} O} O}=\frac{10 \mathrm{~g}}{20 \mathrm{~g} \cdot \mathrm{~mol}^{-1}}=0.5 \mathrm{~mol} .
$$

Also, we need to find the number of neutrons in one molecule of $\mathrm{D}_{2} \mathrm{O}$:

$$
N_{n}=N_{n}\left(D_{2}\right)+N_{n}(0)=2 \cdot 1 n+8 n=10 n .
$$

Finally, we can find the total number of neutrons in 10 g of $\mathrm{D}_{2} \mathrm{O}$:

$$
N_{n(\text { total })}=n \cdot N_{A} \cdot N_{n},
$$

here, $N_{A}=6.02 \cdot 10^{23} \mathrm{~mol}^{-1}$ is the Avogadro constant.
Then, we get:

$$
\begin{aligned}
N_{n(\text { total })}= & n \cdot N_{A} \cdot N_{n}=0.5 \mathrm{~mol} \cdot 6.02 \cdot 10^{23} \mathrm{~mol}^{-1} \cdot 10 \text { neutrons }= \\
& =3.01 \cdot 10^{24} \text { neutrons } .
\end{aligned}
$$

Answer:

$N_{n(\text { total })}=3.01 \cdot 10^{24}$ neutrons.
Answer provided by https://www.AssignmentExpert.com

