Answer Question #67519 – Physics – Mechanics

An ideal gas (γ = 1.40) expands slowly and adiabatically. If the final temperature is one third the initial temperature, by what factor does the volume change?

Solution. To describe the adiabatic process we use equation $TV^{\gamma-1}=const$. Let T_0,V_0 – the initial temperature and volume of an ideal gas and T_f,V_f – the final temperature and volume of an ideal gas. Therefore $T_0V_0^{\gamma-1}=T_fV_f^{\gamma-1}$.

According to the condition of the problem
$$\frac{T_0}{T_f}=3$$
. Hence $\left(\frac{V_f}{V_0}\right)^{\gamma-1}=\frac{T_0}{T_f}=3$. $\rightarrow \frac{V_f}{V_0}=3^{\frac{1}{\gamma-1}}\approx 15.6$

Answer. 15.6

Answer provided by https://www.AssignmentExpert.com