Answer Question #66550, Physics – Electric Circuits

If an AC generator with Vt=150sin(100 π t) is connected to a series RLC circuit, where R=40 Ω , L=185 mH, and C=65 μC, as shown the Figure below, Find: the capacitive reactance, XL, the inductive reactance, Xc, the impedance, Z and the maximum current amplitude, Io

Solution. Find capacitive reactance using the formula $X_C = \frac{1}{2\pi f c} = \frac{1}{\omega c}$. According to the condition of the problem $C = 65 \cdot 10^{-6} F$, $2\pi f = 100\pi$ (according to equation voltage). $X_C = \frac{1}{100\pi \cdot 65 \cdot 10^{-6}} = 48.97\Omega.$

$$X_C = \frac{1}{100\pi \cdot 65 \cdot 10^{-6}} = 48.97\Omega$$

Find inductive reactance using the formula $X_L = 2\pi f L = \omega L$. According to the condition of the problem L=0.185H, $2\pi f=100\pi$ (according to equation voltage).

$$X_L = 100\pi \cdot 0.185 = 58.12\Omega$$
.

The impedance of the series connected RCL can be calculated by the formula $Z = \sqrt{R^2 + (X_L - X_C)^2}$

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

$$Z = \sqrt{40^2 + (58.12 - 48.97)^2} = 41\Omega$$

 $Z = \sqrt{40^2 + (58.12 - 48.97)^2} = 41\Omega$ The maximum current amplitude I_0 find using Ohm's law

$$I_0 = \frac{U_0}{Z} = \frac{150}{41} \approx 3.66A$$

Answer.
$$X_C = 48.97\Omega$$
, $X_L = 58.12\Omega$, $Z = 41\Omega$, $I_0 = 3.66A$

Answer provided by https://www.AssignmentExpert.com