Answer on Question \#65622, Physics / Astronomy | Astrophysics
The length of second pendulum is decreased by 0.3 cm when it is shifted to chennai from london.
If the acceleration due to gravity at London is $981 \mathrm{~cm} / \mathrm{sec}^{\wedge} 2$, the acceleration due to gravity at chennai is :

Find: $\mathrm{g}_{2}-$?
Given:
$\Delta l=0.003 \mathrm{~m}$
$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{T}=2 \mathrm{~s}$

Solution:

The period of simple pendulum:
$T=2 \pi \sqrt{\frac{1}{g}}(1)$
Of $(1) \Rightarrow \sqrt{\frac{\mathrm{l}_{1}}{\mathrm{~g}_{1}}}=\frac{\mathrm{T}}{2 \pi}(2)$
Of (2) $\Rightarrow \frac{\mathrm{l}_{1}}{\mathrm{~g}_{1}}=\frac{\mathrm{T}^{2}}{4 \mathrm{r}^{2}}(3)$
Of (3) $\Rightarrow \mathrm{l}_{1}=\frac{\mathrm{T}^{2} \mathrm{~g}_{1}}{4 \mathrm{\pi}^{2}}(4)$
Of (4) $\left.\Rightarrow\right|_{1}=0.981 \mathrm{~m}(5)$
The length of simple pendulum in Chennai:
$I_{2}=I_{1}-\Delta l(6)$
(5) in (6): $I_{2}=0.978 \mathrm{~m}(7)$

Of $(1) \Rightarrow \sqrt{\frac{\mathrm{l}_{2}}{\mathrm{~g}_{2}}}=\frac{\mathrm{T}}{2 \pi}(8)$
Of (8) $\Rightarrow \frac{\mathrm{l}_{2}}{\mathrm{~g}_{2}}=\frac{\mathrm{T}^{2}}{4 \pi^{2}}$ (9)
Of (9) $\Rightarrow g_{2}=\frac{4 \pi^{2} l_{2}}{T^{2}}(10)$
Of $(10) \Rightarrow g_{2}=9.78 \mathrm{~m} / \mathrm{s}^{2}$

Answer:

$978 \mathrm{~cm} / \mathrm{s}^{2}$

